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ABSTRACT

Following Sklyanin’s proposal in the rational case, we derive the
generating function of the Gaudin Hamiltonians in the trigonometric
case. Our derivation is based on the quasi-classical expansion of the
linear combination of the transfer matrix of the inhomogeneous XXZ
Heisenberg spin chain and the central element, the so-called Sklyanin
determinant. The corresponding Gaudin Hamiltonians are obtained
as the residues of the generating function.

PACS: 02.20.Tw, 03.65.Fd, 05.50+q, 75.10.Jm; MSC 2010: 81R12, 82B23.

1. Introduction

Gaudin models were introduced as interacting spins in a chain [1, 2, 3, 4]. In
this approach, these models were obtained as a quasi-classical limit of the
integrable quantum chains. Moreover, the Gaudin models were extended
to any simple Lie algebra, with arbitrary irreducible representation at each
site of the chain [4].

The rational s¢(2) invariant model was studied in the framework of the
quantum inverse scattering method [5]. In his studies, Sklyanin used the
sf(2) invariant classical r-matrix [5]. A generalization of these results to
all cases when skew-symmetric r-matrix satisfies the classical Yang-Baxter
equation [6] was relatively straightforward [7, 8]. Therefore, considerable
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attention has been devoted to Gaudin models corresponding to the the
classical r-matrices of simple Lie algebras [9, 10] and Lie superalgebras[11,
12]. In the case of the sf(2) Gaudin system, its relation to Knizhnik-
Zamolodchikov equation of conformal field theory [13, 14, 15] or the method
of Gauss factorization [16], provided alternative approaches to computation
of correlation functions. The non-unitary r-matrices and the corresponding
Gaudin models have been studied recently, see [17, 18] and the references
therein. In [19] we have derived the generating function of the s¢(2) Gaudin
Hamiltonians with boundary terms. Moreover, we have implemented the
algebraic Bethe ansatz, based on the appropriate non-unitary r-matrices
and the corresponding linear bracket, obtaining the spectrum of the gener-
ating function and the corresponding Bethe equations [19].

Here, following Sklyanin’s proposal in the rational case [5, 19], we derive
the generating function of the Gaudin Hamiltonians in the trigonometric
case. Our derivation is based on the quasi-classical expansion of the linear
combination of the transfer matrix of the inhomogeneous XXZ7 Heisenberg
spin chain and the central element, the so-called quantum determinant.

2. Inhomogeneous XXZ Heisenberg spin chain

With the aim deriving the Gaudin Hamiltonians in the trigonometric case,
we consider the R-matrix of the XXZ Heisenberg spin chain [20, 21, 22]

sinh(A+7) 0 0 0
0 sinh(A) sinh(n) 0
R(A,m) = . . (1)
0 sinh(n) sinh(\) 0
0 0 0 sinh(A + n)

This R-matrix satisfies the Yang-Baxter equation in the space C?® C? ® C?
(24, 23]

Rig(A — ) Rag(A) Raz(p) = Ros(p) Rag(A) Riz(A — ). (2)

Here we study the inhomogeneous XXZ spin chain with N sites, char-
acterised by the local space V,,, = C?>**! and an inhomogeneous parameter
. The Hilbert space of the system is

N
H= @V, = (C28+1)®N. (3)
m=1
We introduce the Lax operator as the following two-by-two matrix in the
auxiliary space
Vb = (C27

Loy — ] sinh (AL, +753,) sinh(n)S,, (@)
0miN) = (A sinh(n)Sf;  sinh (AL, —S3) /)
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When the quantum space is also a spin % representation, the Lax oper-
ator becomes the R-matrix,

1

Lom(X) = Smh(%)

ROm (/\ - 77/2) .

Due to the commutation relations (34), it is straightforward to check that
the Lax operator satisfies the RLL-relations

Ry ()\_N)Lﬂm()‘_am)LO’m (,u_am) = Lom (,U/_O[m)LOm(A_am)ROO’ ()\_/(’15))
The so-called monodromy matrix
T()\) :LON()\—QN)'-'L(H()\—OQ) (6)

is used to describe the system. For simplicity we have omitted the depen-
dence on the quasi-classical parameter n and the inhomogeneous parameters
{aj,7=1,...,N}. Notice that T'(\) is a two-by-two matrix acting in the
auxiliary space Vp = C?, whose entries are operators acting in H

_( AN B
TR = ( c(x) D ) ' )

From RLL-relations (5) it follows that the monodromy matrix satisfies the
RTT-relations

Roo (A = 1) To (M) Tor (1) = Tor (1) To(A) Roor (A — ). (8)

The periodic boundary conditions and the RTT-relations (8) imply that
the transfer matrix

HO) = troT(V), (9)
commute at different values of the spectral parameter,
[t(w), t(¥)] = 0. (10)
The RTT-relations (8) admit a central element [5]
A[T(N)] = troo Poo To (A —n/2) Ty (A +1n/2), (11)
where
_ -1 1 —Poy

Py = =———— Roy(—n) = : 12
00 QSinh(n) ROO( 77) 2 ( )

where 1 is the identity and P is the permutation in C? ® C2. A straight-
forward calculation shows that A [T(\)] is a scalar operator

N sinh (/\ —am + M) sinh ()\ S M)
AT =] sinh (A — ap, + #) sinh (A — o, — 4)

m=1

)

(13)
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and therefore, it is evidently central,
[A T, T(y)] = 0. (14)

In the next section we will seek a linear combination of the transfer
matrix (9) and the central element (11) whose quasi-classical expansion
yields the generating function of the trigonometric Gaudin Hamiltonians in
the case when the periodic boundary conditions are imposed.

3. Trigonometric Gaudin model

The Gaudin models were introduce as a quasi-classical limit of the in-
tegrable quantum chains [3, 4]. Therefore it is to be expected that the
generating function of the trigonometric Gaudin Hamiltonians could be
obtained from the quasi-classical expansion of the transfer matrix of the
periodic XXZ Heisenberg spin chain. Thus, our first step is to consider the
expansion of the monodromy matrix (6) with respect to the quasi-classical
parameter 7

3 3 0 l( TGt Gt
N N ao®cosh(/\—am)5m+§(ao ®Sm+o, ®Sm) 72 N 312
T =1+n Zm:l sinh(A—aum) +5lo® Zm:l (Sm)
4 ,LQEN ]10®(cosh()\fam) cosh(A—am) anSZJr% (S;QS;+S;IS;{))
2 Lun,m=1 sinh(A—ayy ) sinh(A—ay, )
n#m

72 N N 03®(SmSt =SSy )+of ®(cosh(A—am)S3, Sy —cosh(A—an) S S3)
2 Zmzl Zn<m 2 sinh(A—ay, ) sinh(A—ay,)
n 72 =N N 0y ®(cosh(A—an) S 83 —cosh(A—am)S3, Sy )
2 Zm:l Zn<m 2sinh(A—aym,) sinh(A—ay,)
n? N N US@(S{ S?,Ll7S7J{ST;)+0'8L®(cosh()\fan)SgS;Lfcosh()\fam)sg S;;)
+ 7 Zm:l Zn>m 2sinh(A—ap) sinh(A—aqm)

2 N N 0'7®(cosh()\—am)5f{5$’n—Cosh(/\—oan)Sf’LS;l) 3
+ % Zm:l Zn>m . 2sinh(A—ap) sinh(A—am) + (9(7] )
(15)

It is important to notice that the spin operators S, with o = +,—,3, on
the right hand side of (15) satisfy the usual commutation relations

1S3, SE] = £S5 6imn, [, S ] = 253, S (16)
If the Gaudin Lax matrix is defined by

N 3 3 1 ( + _ - I
o5 ®@cosh(A —ap,)S;, + 5 (0 ® 5, +05 @S5,
Lo\ =) -° ( ) 2 (% ¥ ) (17)
— sinh(A — auy)
and the quasi-classical property of the R-matrix (1) [23]
1
R(\) =1 —nr(N) + O(n®), (18)

sinh(\)
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where

-1

"N = SRy (COSh(/\)(]l @1+’ ®a®)+ % (6T @0 0~ ®a+)) :

(19)
is taken into account, then substitution of the expansion (15) into the RTT-
relations (8) yields the so-called Sklyanin linear bracket [5]

[L1(N), La(p)] = [ria(A = p), Li(A) + La(w)] - (20)

The classical r-matrix (19) has the unitarity property

ra1(=A) = —r12(N), (21)
and satisfies the classical Yang-Baxter equation [6]

[r13(A), 23 ()] + [r12(A — p), r13(A) + 723(p)] = 0. (22)

Thus the Sklyanin linear bracket (20) is anti-symmetric and it obeys the
Jacobi identity. It follows that the entries of the Lax matrix (17) generate
a Lie algebra relevant for the Gaudin model.

Using the expansion (15) it is evident that

=2+ S (50

N cosh(A—am) cosh(A—a,) 83,83 41 (S:,QS; +S;S,J{) 3
+ 2 ntm SR =) sinh (o) +O0(n°). (23)
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Analogously, we can expand (11) to obtain

A[T(N)] :]1+mrL(,\)+§(tr2L(,\)—tr L*(X))

363, 1(gtg— 41— ot
2N 312, N coshOA—am) cosh(A—an) S5, S5+ 3 (S5 +5m 57 )
+n zm:1 <(Sm) +Zn7ﬁm sinh(A—am ) sinh(A—anp)

2 pe N N o3 ®(Sm St —shsit ) +of @(cosh(A—am)S, i —cosh(A—an)S; S5 )
+7 Too/ Logr Zm:l Zm>n 2 sinh(A—am) sinh(A—an)

o, ®(cosh()\fan)s;,‘;sygl7cosh()\7am)S§nS;"[)
2 sinh(A—aym ) sinh(A—an) o’

P P SN 5w 08®(S;S;‘;—S;tS$)+o’8’®(cosh(k—an)S%S;L—cosh()\—am)s,;Sg’n)
2 oo/ 00’ m=1 n>m 2 sinh(A—ap) sinh(A—am)

n 00_®(cosh(/\—am)S:S;’n—cosh(k—an)s,%s;;)
2 sinh(A—apn) sinh(A—ap) o’

3 — gt _gt gt + _ 3 g— _ — g3
+ﬁtr P ZN ZN UO,®(SmSn S Sn )+o’0/®(cosh()\ am)Sy, Sy, —cosh(X\ an)SmSn)
2 Yoo’ g9/ 10 Zum=1 Zem>n 2 sinh(A—aym) sinh(A—an)

a&@(cosh()\—ozn)s,;; S%—cosh()\—am)sgns;f)
+ 2 sinh(A—am) sinh(A—an)

P pe 1SN N aS,@(SgS%—S;S%)-ka;@(cosh(k—an)S:T)’LS;L—cosh(A—am)S;Sf’n)
+ 5 troor Pogr Lo 2om=1 2onsm 2 sinh(A—ap) sinh(A—am)

,@(cosh(A—am) S} S5, —cosh(A—an) S S}, ) 5
0 2 sinh(A—ap) sinh(A—ap) +O(77 )’ (24)

where L(\) is given in (17). The final expression for the expansion of
T'(\)] is obtained after taking all the traces

N N 393 1 1/g+a— — G+
312 cosh(A — ay,) cosh(A — ) S5, S5, + 5 (S5, +S,.57)
. Z ((Sm) * Z sinh(A — auy,) sinh(\ — ay,)
L

m=1 n#Em
2
-t 2(\) + O(n?). (25)
To obtain the generation function of the Gaudin Hamiltonians notice that
(23) and (25) yield
2
tO) — A[T(N)] =1+ %tr L2(\) + O(). (26)
Therefore 1
T(A) = tr L*(\) (27)

commute for different values of the spectral parameter,

[7(A), ()] = 0. (28)
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Moreover, substituting (17) into (27) it is straightforward to obtain the
expansion

k- (sm +1) al
Z mATm +2 Z coth(A — au) Hy + (531)2 ; (29)
=1

2y — o
sinh® (X — a,) =

with the Gaudin Hamiltonians

1
_ _ 3 a3 +g— - o+
Hm_rg;ncoth(a an) S S+ 5 — TE— (S;hS0 + S8, (30)
and the global generator
N
Sh=> 53, (31)
m=1

The global generator defined above generates the U(1) symmetry

(53, Hp) =0, with m=1,2...N. (32)
Evidently, we have
[Hp, H,) =0, with m,n=1,2...N. (33)

This shows that 7()) is the generating function of Gaudin Hamiltonians
(30) when the periodic boundary conditions are imposed [5].

4. Conclusion

Following Sklyanin’s proposal [5, 19], we have derive the generating func-
tion of the Gaudin Hamiltonians in the trigonometric case by considering
the quasi-classical expansion of the linear combination of the transfer ma-
trix of the XXZ Heisenberg spin chain and the corresponding quantum
determinant. The Gaudin Hamiltonians are obtained as the residues of the
generating function. It would be of considerable interest to generalise these
results to the case of non-periodic boundary conditions.

A Basic definitions

We consider the operators S® with o = +,—, 3, acting in some (spin s)
representation space C***1 with the commutation relations [25]

sinh(2n.53)

3 of1 + + Q-1 _
(93, 8%] = £5%, [St,57] = O

=25%,  (34)
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with ¢ = €. In the space C***! these operators admit the following matrix
representation [25, 26, 27]

951 2641 2s+1
53 = Z a;€;;, S+ = Z bieii+1a and S~ = Z bieiJrli (35)
i=1 i=1 =1
where
" —q "
(eij)wt = 0ikdj1, ai=s+l—i, b= \/[i]q [2s+1—iq and fz]o = q—qt
(36)

In the particular case of spin % representation, one recovers the Pauli ma-

trices ) .
003 200+
o _ o «@ [e%
S o 20 2 < 25(1— _5043 )

We consider a spin chain with N sites with spin s representations, i.e.
a local C?**! space at each site and the operators

S8 =1® -© 85 ® o1, (37)

m

witha=+,—,3and m=1,2,...,N.
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