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Abstract

We define new creation operators relevant for implementation of
the algebraic Bethe ansatz for the sℓ(2) Gaudin model with the gen-
eral reflection matrix. This approach is based on the linear bracket
corresponding to the relevant non-unitary classical r-matrix.
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1. Introduction

In [1] we have derived the generating function of the sℓ(2) Gaudin Hamil-
tonians with boundary terms. We have shown that the implementation of
the algebraic Bethe ansatz requires an appropriate non-unitary r-matrices
and the corresponding linear bracket [1]. The non-unitary r-matrices and
the corresponding Gaudin models have been studied recently, see [2, 3] and
the references therein. In [1] we have obtained the spectrum of the gener-
ating function and the corresponding Bethe equations. However, explicit
and compact form of the Bethe vector φM (µ1, µ2, . . . , µM ), for an arbitrary
positive integer M , remained open. Our aim here is to propose creation
operators which should solve this problem.

2. sℓ(2) Gaudin model with boundary terms

The classical r-matrix relevant for the sℓ(2) Gaudin model is given by [4]

r(λ) = −P
λ
, (1)
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where P is the permutation matrix in C2 ⊗ C2. This classical r-matrix
satisfies the classical Yang-Baxter equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0, (2)

and it has the unitarity property

r21(−λ) = −r12(λ). (3)

The general solution of the corresponding classical reflection equation [5,
6, 7]:

r12(λ− µ)K1(λ)K2(µ) +K1(λ)r21(λ+ µ)K2(µ) =

= K2(µ)r12(λ+ µ)K1(λ) +K2(µ)K1(λ)r21(λ− µ),
(4)

is give by [1]

K̃(λ) =

(
ξ − λ ψ̃λ

ϕ̃λ ξ + λ

)
. (5)

An important preliminary step in the implementation of the algebraic Bethe
ansatz for the open Gaudin model is to bring the K-matrix (5) to the upper,
or lower, triangular form [1]

K(λ) = U−1K̃(λ)U =

(
ξ − λν λψ

0 ξ + λν

)
, (6)

where ψ = ϕ̃+ ψ̃ and

U =

(
−1− ν ϕ̃

ϕ̃ −1− ν

)
, (7)

with ν =

√
1 + ϕ̃ ψ̃ .

Here we study the sℓ(2) Gaudin model with N sites, characterised by
the local space Vm = C2s+1 and inhomogeneous parameter αm. The Hilbert
space of the system is

H =
N
⊗
m=1

Vm = (C2s+1)⊗N . (8)

Following [1] we introduce the Lax operator

L0(λ) =

(
H(λ) F (λ)
E(λ) −H(λ)

)
=

N∑
m=1

(
σ⃗0 · S⃗m
λ− αm

+
K0(λ)σ⃗0K

−1
0 (λ) · S⃗m

λ+ αm

)
,

(9)
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with the following local realisation for the entries of the Lax matrix

E(λ) =

N∑
m=1

(
S+
m

λ− αm
+

(ξ + λν)S+
m

(ξ − λν)(λ+ αm)

)
, (10)

F (λ) =

N∑
m=1

(
S−
m

λ− αm
+

(ξ − λν)2S−
m − λ2ψ2S+

m − 2λψ(ξ − λν)S3
m

(ξ + λν)(ξ − λν)(λ+ αm)

)
,

(11)

H(λ) =

N∑
m=1

(
S3
m

λ− αm
+
λψ S+

m + (ξ − λν)S3
m

(ξ − λν)(λ+ αm)

)
. (12)

Due to the commutation relations (36), it is straightforward to check that
the Lax operator (9) satisfies the following linear bracket relations

[L0(λ),L0′(µ)] =
[
rK00′(λ, µ),L0(λ)

]
−
[
rK0′0(µ, λ),L0′(µ)

]
, (13)

where the non-unitary r-matrix is give by

rK00′(λ, µ) = r00′(λ− µ)−K0′(µ)r00′(λ+ µ)K−1
0′ (µ). (14)

The commutator (13) is obviously anti-symmetric. It obeys the Jacobi
identity because the r-matrix (14) satisfies the classical Yang-Baxter equa-
tion

[rK32(λ3, λ2), r
K
13(λ1, λ3)] + [rK12(λ1, λ2), r

K
13(λ1, λ3) + rK23(λ2, λ3)] = 0. (15)

The linear bracket (13) based on the r-matrix rK00′(λ, µ) (14), corresponding
to (6) and the classical r-matrix (1), defines the Lie algebra relevant for the
open sℓ(2) Gaudin model.

As it was shown in [1], it is instructive to introduce the new generators
e(λ), h(λ) and f(λ) as the following linear combinations of the original ones

e(λ) = −ξ+λν
λ E(λ), h(λ) = 1

λ

(
H(λ)− ψλ

2ξ E(λ)
)
,

f(λ) = 1
λ ((ξ + λν)F (λ) + ψλH(λ)) . (16)

The key observation is that in the new basis we have

[e(λ), e(µ)] = [h(λ), h(µ)] = [f(λ), f(µ)] = 0. (17)
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Therefore there are only three nontrivial relations

[h(λ), e(µ)] =
2

λ2 − µ2
(e(µ)− e(λ)) , (18)

[h(λ), f(µ)] =
−2

λ2 − µ2
(f(µ)− f(λ))− 2ψν

(λ2 − µ2)ξ

(
µ2h(µ)− λ2h(λ)

)
− ψ2

(λ2 − µ2)ξ2
(
µ2e(µ)− λ2e(λ)

)
, (19)

[e(λ), f(µ)] =
2ψν

(λ2 − µ2)ξ

(
µ2e(µ)− λ2e(λ)

)
− 4

λ2 − µ2
(
(ξ2 − µ2ν2)h(µ)− (ξ2 − λ2ν2)h(λ)

)
. (20)

In the Hilbert space H (8), in every Vm = C2s+1 there exists a vector
ωm ∈ Vm such that

S3
mωm = smωm and S+

mωm = 0. (21)

We define a vector Ω+ to be

Ω+ = ω1 ⊗ · · · ⊗ ωN ∈ H. (22)

From the definitions above, the formulas (10) - (12) and (16) it is straight-
forward to obtain the action of the generators e(λ) and h(λ) on the vector
Ω+

e(λ)Ω+ = 0, and h(λ)Ω+ = ρ(λ)Ω+, (23)

with

ρ(λ) =
1

λ

N∑
m=1

(
sm

λ− αm
+

sm
λ+ αm

)
=

N∑
m=1

2sm
λ2 − α2

m

. (24)

The generating function of the Gaudin Hamiltonians with boundary
terms is given by [1]:

τ(λ) = tr0 L2
0(λ) = 2λ2

(
h2(λ) +

2ν2

ξ2 − λ2ν2
h(λ)− h′(λ)

λ

)

− 2λ2

ξ2 − λ2ν2

(
f(λ) +

ψλ2ν

ξ
h(λ) +

ψ2λ2

4ξ2
e(λ)− ψν

ξ

)
e(λ).

(25)

An important initial observation in the implementation of the algebraic
Bethe ansatz is that the vector Ω+ (22) is an eigenvector of the generating
function τ(λ). To show this we use the expression (23) and (24):

τ(λ)Ω+ = χ0(λ)Ω+ = 2λ2
(
ρ2(λ) +

2ν2 ρ(λ)

ξ2 − λ2ν2
− ρ′(λ)

λ

)
Ω+. (26)
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With the aim of obtaining the explicit and compact form of the Bethe
vectors we define the following creation operaters

c(λ) = f(λ) +
ψξ

ν
h(λ) +

ψ2

4ν2
e(λ). (27)

Using the relations (17) - (20) it is straightforward to check that

[c(λ), c(µ)] = 0. (28)

Consequently, the Bethe vectors generated by the action of the operators
(27) on the vector Ω+ (22) will be symmetric functions of theirs arguments.

Our main aim is to show that the Bethe vector φ1(µ) has the form

φ1(µ) = c(µ)Ω+ =

(
f(λ) +

ψξ

ν
ρ(λ)

)
Ω+, (29)

where c(µ) is given by (27). The action of the generating function of the
Gaudin Hamiltonians reads

τ(λ)φ1(µ) = [τ(λ), c(µ)] Ω+ + χ0(λ)φ1(µ). (30)

Using (25) and the commutation relations (17) - (20) it is evident that

[τ(λ), c(µ)] Ω+ = [τ(λ), f(µ)] Ω+. (31)

Then, a straightforward calculation show that

[τ(λ), f(µ)] Ω+ = − 8λ2

λ2 − µ2

(
ρ(λ) +

ν2

ξ2 − λ2ν2

)
φ1(µ)

+
8λ2(ξ2 − µ2ν2)

(λ2 − µ2)(ξ2 − λ2ν2)

(
ρ(µ) +

ν2

ξ2 − µ2ν2

)
φ1(λ). (32)

Therefore the action of the generating function τ(λ) on φ1(µ) is given by

τ(λ)φ1(µ) = χ1(λ, µ)φ1(µ)+
8λ2(ξ2 − µ2ν2)

(λ2 − µ2)(ξ2 − λ2ν2)

(
ρ(µ) +

ν2

ξ2 − µ2ν2

)
φ1(λ),

(33)
with

χ1(λ, µ) = χ0(λ)−
8λ2

λ2 − µ2

(
ρ(λ) +

ν2

ξ2 − λ2ν2

)
. (34)

The unwanted term in (33) vanishes when the following Bethe equation is
imposed on the parameter µ,

ρ(µ) +
ν2

ξ2 − µ2ν2
= 0. (35)

Thus we have shown that φ1(µ) (29) is the desired Bethe vector of the
generating function τ(λ) corresponding to the eigenvalue χ1(λ, µ).
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3. Conclusion

We have proposed a new creation operators relevant for implementation of
the algebraic Bethe ansatz for the sℓ(2) Gaudin model with the general re-
flection matrix. However, explicit and compact form of the relevant Bethe
vector φM (µ1, µ2, . . . , µM ), for an arbitrary positive integerM , requires fur-
ther studies and will be reported elsewhere. Such a formula would be crucial
for the off shell scalar product of the Bethe vectors and these results could
lead to the correlations functions of Gaudin model with boundary. More-
over, it would be of considerable interest to establish a relation between
Bethe vectors and solutions of the corresponding Knizhnik-Zamolodchikov
equations.

A Basic definitions

We consider the spin operators Sα with α = +,−, 3, acting in some (spin
s) representation space C2s+1 with the commutation relations

[S3, S±] = ±S±, [S+, S−] = 2S3, (36)

and Casimir operator

c2 = (S3)2 +
1

2
(S+S− + S−S+) = (S3)2 + S3 + S−S+ = S⃗ · S⃗.

In the particular case of spin 1
2 representation, one recovers the Pauli ma-

trices

Sα =
1

2
σα =

1

2

(
δα3 2δα+
2δα− −δα3

)
.

We consider a spin chain with N sites with spin s representations, i.e.
a local C2s+1 space at each site and the operators

Sαm = 1⊗ · · · ⊗ Sα︸︷︷︸
m

⊗ · · · ⊗ 1, (37)

with α = +,−, 3 and m = 1, 2, . . . , N .
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