Holographic approach for quark-gluon plasma in heavy ion collsions

Irina Aref'eva

Steklov Mathematical Institute, RAN, Moscow

The 8th MATHEMATICAL PHYSICS MEETING: Summer School and Conference on Modern Mathematical Physics 24 - 31 August 2014, Belgrade, Serbia

Outlook

- Physical picture of formation of Quark-Gluon Plasma in heavyions collisions
- Why holography?
- **Results from holography (**fit of experimental data via holography:

top-down

bottom-up)

- Holography description of static QGP
- Holography description of QGP formation in heavy ions collisions
 - Thermalization time
 - Multiplicity

Quark-Gluon Plasma (QGP): a new state of matter

QGP is a state of matter formed from deconfined quarks, antiquarks, and gluons at high temperature

QCD: asymptotic freedom, quark confinement

Experiments: Heavy Ions collisions produced a medium

HIC are studied in several experiments:

- started in the 1990's at the Brookhaven Alternating Gradient Synchrotron (AGS),
- the CERN Super Proton Synchrotron (SPS)
- the Brookhaven Relativistic Heavy-Ion Collider (RHIC)
- the LHC collider at CERN.

 $\sqrt{s_{_{NN}}} = 4.75 \, GeV$ $\sqrt{s_{_{NN}}} = 17.2 \, GeV$ $\sqrt{s_{_{NN}}} = 200 \, GeV$ $\sqrt{s_{_{NN}}} = 2.76 \, TeV$

There are strong experimental evidences that RHIC or LHC have created some medium which behaves collectively:

- modification of particle spectra (compared to p+p)
- jet quenching
- high p_T-suppression of hadrons
- elliptic flow
- suppression of quarkonium production

Study of this medium is also related with study of Early Universe

Evolution of the Early Universe

Evolution of a Heavy Ion Collision

 $\Delta t \approx 1 \ fm/c$

QGP as a strongly coupled fluid

- Conclusion from the RHIC and LHC experiments: appearance of QGP (not a weakly coupled gas of quarks and gluons, but a strongly coupled fluid).
- This makes <u>perturbative methods</u> inapplicable
- The <u>lattice formulation</u> of QCD does not work, since we have to study real-time phenomena.
- This has provided a motivation to try to understand the dynamics of QGP through the **gauge/string duality**

Dual description of QGP as a part of Gauge/string duality

- There is not yet exist a gravity dual construction for QCD.
- Differences between N = 4 SYM and QCD are less significant, when quarks and gluons are in the deconfined phase (because of the conformal symmetry at the quantum level N = 4 SYM theory does not exhibit confinement.)
- Lattice calculations show that QCD exhibits a quasi-conformal behavior at temperatures T >300 MeV and the equation of state can be approximated by E = 3 P (a traceless conformal energy-momentum tensor).
- This motivates to use the AdS/CFT correspondence as a tool to get non-perturbative dynamics of QGP.
- There is the considerable success in description of the static QGP.

Review: Solana, Liu, Mateos, Rajagopal, Wiedemann, 1101.0618

I.A., Holographic approach for quark-gluon plasma in heavy ion collsions, UFN, v184, 2014

lattice calculation of QCD thermodynamics $N_f=3$ S. Borsanyi et al., "The QCD equation of state with dynamical quarks," arXiv:1007.2580

Quasi-conformal trend in a window of T > 2 Tc

Holography and AdS/CFT correspondence

 $< e^{\partial M}$ $= e^{S_g[\phi_c(\phi_0)]}$

Maldacena, 1997 Gubser,Klebanov,Polyakov Witten, 1998

M=AdS, BHAdS,...

$$\phi(t, \vec{x}, z), \quad S_g[\phi], \quad \delta S_g[\phi_c] = 0$$
$$\phi_c \mid_{\partial M} = \phi_0$$

+ requirement of regularity at horizon

Correlators with/without Temperature via AdS/CFT

Example I. AdS, D=2+1

AdS, D=2+1

$$< O_{\Delta}(t,x)O_{\Delta}(t,x') > \sim \frac{1}{|x-x'|^{2\Delta}}$$
 $ds^{2} = \frac{-dt^{2} + dx^{2} + dz^{2}}{z^{2}}$

Example II. BHAdS, D=2+1

$$ds^{2} = \frac{1}{z^{2}} (f(z)dt^{2} + \frac{dz^{2}}{f(z)} + d\vec{x}^{2})$$
$$f(z) = 1 - Mz^{2}$$

 $r_{H} = 2\pi T$ Temperatute

 $< O_{\Delta}(t,x)O_{\Delta}(t,x') >_{T} \sim \frac{1}{|\sinh(\pi T |x-x'|)|^{2\Delta}}$

Bose gas

Holography for thermal states

TQFT = QFT with temperature

Hologhraphic Description of Formation of QGP

(Hologhraphic thermalization)

Black Hole <u>formation</u> in Anti de Sitter (D+1)-dim space-time

Models of BH creation in D=5 and their meaning in D=4

$$g_{MN} \Rightarrow g_{MN}^{(0)} + g_{MN}^{(1)}$$

$$Z_{ren}(z_0) g_{\mu\nu}^{(1)} |_{boundary = T_{\mu\nu}}$$

Main idea: make some perturbation of AdS metric that near the boundary "mimic" the mater (heavy ions) collisions and see what happens.

Hologhraphic thermalization

How to "mimic" the heavy ions collision

Models: shock waves collision in AdS

colliding ultrarelativistic particles in AdS₃ (toy model)

infalling shell

Nucleus collision in AdS/CFT

$$\langle T_{--} \rangle \sim \mu \, \delta(x^{-})$$

$$\langle T_{_{++}} \rangle \sim \mu \, \delta(x^+)$$

The metric of two shock waves in AdS corresponding to collision of two ultrarelativistic nucleus in 4D

Holographic collision of two gaussian shocks

Shocks pass through each other

Hologhraphic thermalization

Physical quantities that we expect to estimate:

D=5 AdS

D=4 Minkowski

 Black hole formation time

Thermalization time

• Entropy

Multiplicity

Thermalization time

Experimental data (just estimations)

$$\epsilon(y) = \frac{1}{A\tau_{therm}} \frac{N}{dy} \langle m_{tr} \rangle, \quad m_{tr} = \sqrt{m_{\pi}^2 + k_{tr}}$$

Bjorken, 1983

Holographic estimations

Position of horizon ~ size of the trapped surface

Multiplicity

Experimental data

Plot from: ATLAS Collaboration 1108.6027

Multiplicity as entropy

D=4. Macroscopic theory of high-energy collisions Landau(1953); Fermi(1950) thermodynamics, hydrodynamics, kinetic theory, ...

D=5. Holographic approach

Main conjecture: multiplicity is proportional to entropy of produced D=5 Black Hole

$$\mathcal{M} \sim S$$

Gubser et al: 0805.1551

The mininal black hole entropy can be estimated by trapped surface area

$$S \ge S_{trapped} = A_{trapped} / 4G_N$$

Gubser, Pufu, Yarom, JHEP, 2009 Alvarez-Gaume, C. Gomez, Vera, Tavanfar, Vazquez-Mozo, PLB, 2009 IA, Bagrov, Guseva, JHEP, 2009 Kiritsis, Taliotis, JHEP, 2011

Multiplicity: Hologhrapic formula vs experimental data

The simple holographic model gives

 $dN_{ch}/d\eta \sim s_{NN}^{1/3}$

Search for models with suitable entropy

Reproduces 2-loops QCD beta-function

Reproduce an asymptotically-linear glueball spectrum

Kiritsis, Taliotis, **JHEP(2012)**

Shock wave metric with modified b-factor

$$ds^{2} = b^{2}(z) \left(dz^{2} + dx^{i} dx^{i} - dx^{+} dx^{-} + \phi(z, x^{1}, x^{2}) \delta(x^{+}) (dx^{+})^{2} \right)$$

The Einstein equation for particle in dilaton field

$$\left(R_{\mu\nu} - \frac{g_{\mu\nu}}{2}R\right) - \frac{g_{\mu\nu}}{2}\left(-\frac{4}{3}(\partial\Phi_s)^2 + V(\Phi_s)\right) - \frac{4}{3}\partial_\mu\Phi_s\,\partial_\nu\Phi_s - g_{\mu\nu}\frac{d(d-1)}{2L^2} = 8\pi G_5 J_{\mu\nu}$$

Typical behavour

 $b(z) = \frac{L}{z}e^{-z^2/z_0^2}$

$$s_{NN}^{\delta_1} \ln^{\delta_2} s_{NN}$$
$$\delta_1 \approx 0.225, \quad \delta_2 \approx 0.718$$

5

Description of HIC by the wall-wall shock wave collisions

S. Lin, E. Shuryak, 0902.1508 I. A., Bagrov and E.Pozdeeva, JHEP(2012)

$$ds^{2} = b^{2}(z) \left(dz^{2} + dx^{i} dx^{i} - dx^{+} dx^{-} + \phi(z, x^{1}, x^{2}) \delta(x^{+}) (dx^{+})^{2} \right)$$

$$\left(\partial_z^2 + \frac{3b'}{b}\partial_z\right)\phi^w(z) = -16\pi G_5 \frac{E^*}{b^3}\delta(z_* - z)$$

I. A., E.Pozdeeva, T.Pozdeeva (2013, 2014)

Power-law b-factor

 $b = (L/z)^a$

$$S_{\text{walls}} = \frac{L}{2G_5} \left(\frac{8\pi G_5}{L^2}\right)^{\frac{3a-1}{3a}} E^{\frac{3a-1}{3a}}$$

The multiplicity depends as $s^{0.15}_{NN}$ in the range 10-10³ GeV

-

Power-law b-factor coinsides with experimental data at $a \approx 0.47$.

We consider

$$b(z) = \frac{L}{z^{1/2}}$$

Price: non standard kinetic term!

Multiplicity with anisotropic Lifshitz background

IA, A. Golubtsova

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{|g|} \left[R - 2\Lambda - \frac{1}{12}H_3^2 - \frac{m_0^2}{2}B_2^2 \right]$$

$$H_3 = 2\sqrt{\frac{\nu - 1}{\nu}}\rho d\rho \wedge dt \wedge dx, \quad B_2 = \sqrt{\frac{\nu - 1}{\nu}}\rho^2 dt \wedge dx$$

$$\Lambda = 5 + \frac{6}{\nu} + \frac{3}{\nu^2}$$

$$ds^{2} = \rho^{2} \left(-dt^{2} + dx^{2} \right) + \rho^{2/\nu} \left(dy_{1}^{2} + dy_{2}^{2} \right) + \frac{d\rho^{2}}{\rho^{2}}$$

Shock wave

$$z = 1/\rho$$

$$ds^{2} = \frac{\phi(y_{1}, y_{2}, z)\delta(u)}{z^{2}}du^{2} - \frac{1}{z^{2}}dudv + z^{-2/\nu}\left(dy_{1}^{2} + dy_{2}^{2}\right) + \frac{dz^{2}}{z^{2}}dudv + z^{-2/\nu}\left(dy_{1}^{2} + d$$

Solves E.O.M. if

Multiplicity with anisotropic Lifshitz background

Domain wall

$$\left[\Box_3 - \left(1 + \frac{2}{\nu}\right)\right] \frac{\phi(z)}{z} = -16\pi G_5 z J_{uu} \qquad J_{uu} = z^{1+2/\nu} \delta(z - z_0)$$

$$\phi(z) = -\frac{8\nu\pi G_5 E}{\nu+1} z_0^{2(\nu+1)/\nu} \Theta(z-z_0) \left(\frac{z^{2(\nu+1)/\nu}}{z_0^{2(\nu+1)/\nu}} - 1\right) + C_1 z^{2(\nu+1)/\nu} + C_2$$

Multiplicity with anisotropic Lifshitz background

Colliding Domain Walls

$$\begin{split} ds^2 &= -\frac{1}{z^2} du dv + \frac{1}{z^2} \phi_1(y_1, y_2, z) \delta(u) du^2 + \frac{1}{z^2} \phi_2(y_1, y_2, z) \delta(u) dv^2 \\ &+ \frac{1}{z^{2/\nu}} \left(dy_1^2 + dy_2^2 \right) + \frac{dz^2}{z^2} \end{split}$$

$$ds^{2} = b^{2}(z)(-dt^{2} + dz^{2} + dx_{i}^{2})$$

$$V_{Cornell}(x) \equiv V_{Q\bar{Q}}(x) = -\frac{\kappa}{x} + \sigma_{str}x + V_0$$

$$\kappa \approx 0.48, \ \sigma_{str} = 0.153 GeV^2, \ C = -0.25 GeV$$
and V. Zakharov

O. Andreev and V. Zakharov hep-ph/0604204

Coulomb term

Confinement linear potential

 $\frac{L^2 e^{\frac{az^2}{2}}}{z^2} \approx \frac{L^2}{zL_{eff}}$

with D.Ageev

Quark potential in string frame

$$ds_s^2 = e^{2\mathcal{A}(z)}(-dt^2 + d\vec{x}^2 + dz^2)$$

Trapped surface in Einstein frame

$$ds_E^2 = e^{2A(z)}(-dt^2 + d\vec{x}^2 + dz^2)$$

$$A(z) = -\frac{2}{3}\Phi + \mathcal{A}$$

0

$$\Phi'' - 2\mathcal{A}'\Phi' = \frac{3}{2}(\mathcal{A}'' - \mathcal{A}'^2)$$

Trapped surface

Pack the trapped surface in the interval

 $z_{UV} < z < z_{IR}$

Conclusion

Formation of QGP of 4-dim QCD ⇔ Black Hole formation in AdS₅

b-factor that fits experimental data:

1) Multiplicity

$$S_{data} \propto s_{NN}^{0.15}$$

2)Cornell qq-potential

$$V_{qq}(x) = -\frac{\kappa}{x} + \sigma_{str}x + V_0$$

attempts to get top-down model for this b-factor